

Gulich 7

Francisco Nemiña 1,2 Dra. Anabella Ferral 1,3 Lic. Alba German^{1,3} Dr. Marcelo Scavuzzo^{1,2} ¹ Instituto Gulich ² CONAE ³ CONICET

Hablemos primero sobre mediciones espectrales

¿Cómo comparo mediciones espectroradiométricas?

¿0.0055... es chico?

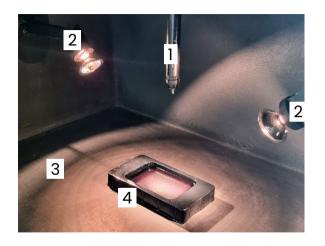
¿Entonces eran iguales?

Que nos queda de acá en adelante

Hablemos primero sobre mediciones espectrales

Setup de medición

- 1. Fibra óptica conectada a un espectroradiometro ASD FieldSpec 4 Hi-Res
- 2. Sol
- 3. Muestra


Campo

- Permiten comparar directamente con el satélite.
- Sistemas naturales.
- Caminos ópticos largos.
- Condiciones de iluminación no controlables.
- Dificultados de medir a campo.

Setup de medición

- Fibra óptica conectada a un espectroradiometro ASD FieldSpec 4 Hi-Res
- 2. Lamparas OSRAM HALOSPOT 48 20 W 12 V 8° GY4.
- 3. Caja negra cerrada
- 4. Muestra

Laboratorio

- Permite armar muestras específicas.
- Condiciones de iluminación controlables y reproducibles.
- Caminos ópticos cortos.
- No permite comparar con el satélite.

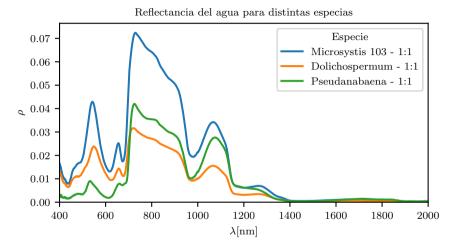


Figura: Mediciones de reflectancia para 3 especies de cianobacterias medidas en laboratorio.

Hagamos un modelo lineal para la mezcla de dos especies

$$ho_{\mathsf{Mezcla}} = rac{
ho_1 +
ho_2}{2} + \mathcal{O}\left(rac{c_2}{c_1} - 1
ight)$$
 (1)

con c_1 y c_2 el coeficiente de extinción.

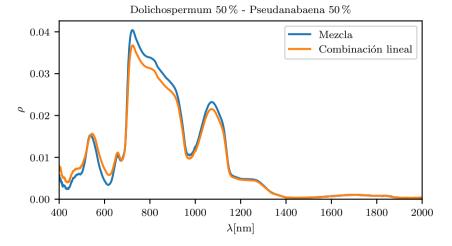


Figura: Comparación entre la reflectancia medida para una muestra de dos cianobacterias y el resultado obtenido a partir de la combinación lineal.

¿Cómo comparo mediciones espectroradiométricas?

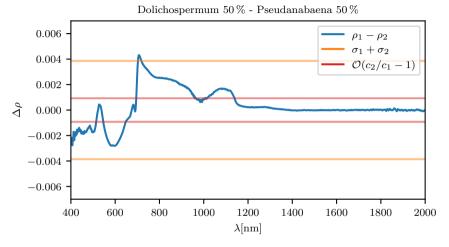


Figura: Comparación entre la diferencia de la medición hecha en laboratorio y la combinación lineal con su error.

De acá nos podríamos imaginar que

$$\rho_1 = \rho_2 \Leftrightarrow \rho_1 - \rho_2 < \sigma_1 + \sigma_2 \tag{2}$$

pero los espectros viven en \mathbb{R}^N así que comparar longitud de onda a longitud de onda puede no ser la mejor ópcion.

Lo que puedo hacer es mirar algún valor que me hable sobre que tanto se parecen ambos espectros

- $| | | \rho_1 \rho_2 | |_n$
- ightharpoonup $\cos \alpha(\rho_1, \rho_2)$
- etc

Normalized Spectral Similarity Score - NS^3

Podemos adaptamos el índice NS^3 (Nidamanuri y Zbell, 2010) para ver si dos espectros se parecen

$$NS3 = \sqrt{D^2 + (1 - \cos \alpha)^2}$$
 (3)

donde

$$D = \sqrt{\frac{1}{M} \sum_{j}^{M} (\rho_{1,j} - \rho_{2,j})^{2}}$$
 (4)

$$\cos \alpha = \frac{\sum_{j}^{M} \rho_{1,j} \rho_{2,j}}{\left(\sum_{j}^{M} \rho_{1,j}^{2}\right) \left(\sum_{j}^{M} \rho_{2,j}^{2}\right)} \tag{5}$$

si es chico, los espectros se parecen.

Gulich

¿0.0055... es chico?

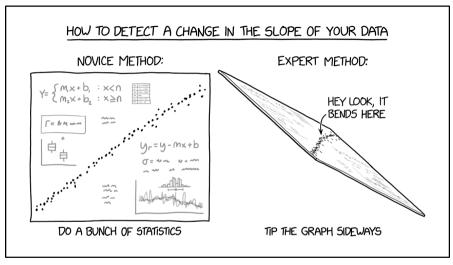


Figura: "Squinting at a graph is fine for getting a rough idea of the answer, but if you want to pretend to know it exactly, you need statistics." (Munroe, 2022)

Vamos a suponer:

Que el error en la reflectancia es Gaussiano

$$\rho \sim \rho_0 \left(1 + \sigma \times \mathcal{N}(0, 1) \right) \tag{6}$$

- ightharpoonup Que el valor de σ tal que tengamos error relativo fijo para todas las lonaitudes de onda.
- $ightharpoonup
 ho_0$ es un valor de reflectancia obtenido a partir una librería de firmas espectrales de cianobacterias (Slonecker y col., 2021).

Podemos bajo la hipotesis $H0: \rho_1=\rho_2$ obtener una distribución para el NS^3 usando el método de Montecarlo.

- 1. Elegimos un valor de ρ_0 .
- 2. Obteniemos dos realizaciones de la variable aleatoria ρ para dicho ρ_0 .
- 3. Calculamos y guardamos el valor de NS^3 .
- 4. Repetimos los pasos 1-3 hasta obtener la distribución.

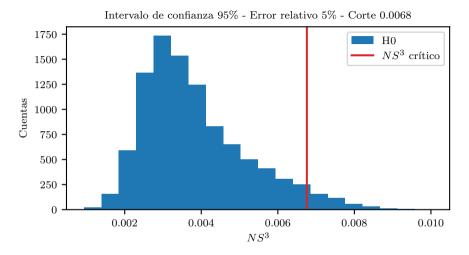


Figura: Distribución para el NS^3 para un error relativo del 5 % y un intervalo de confignza del 95 %.

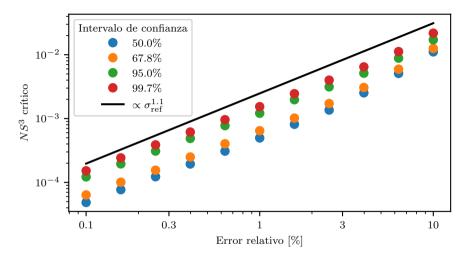


Figura: Variación del NS^3 crítico para distintos errores relativos y valores del intervalo de confignza.

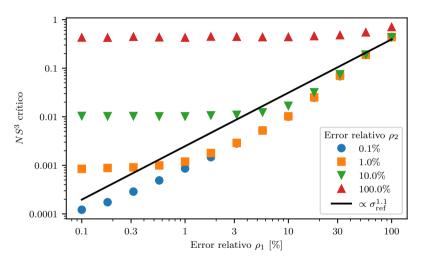


Figura: Variación del NS^3 crítico para un intervalo de confianza del 95 % pero con distintos errores relativos para cada espectro medido.

Si agregamos la hipotesis $H1: \rho_1 \neq \rho_2$ obtener una distribución para el NS^3 usando el método de Montecarlo.

- 1. Elegimos dos valores de ρ_0 distintos.
- 2. Obteniemos dos realizaciones de la variable aleatoria ρ para dicho ρ_0 .
- 3. Calculamos y guardamos el valor de NS^3 .
- 4. Repetimos los pasos 1-3 hasta obtener la distribución.

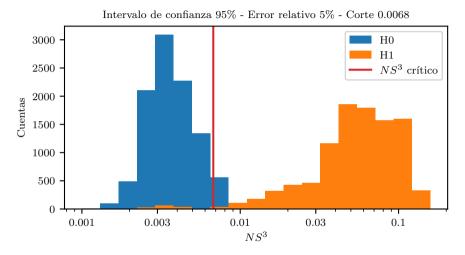


Figura: Distribución del NS^3 para la hipotesis nula H0 y hipotesis alternativa H1.

¿Entonces eran iguales?

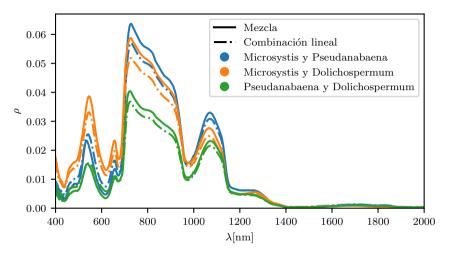


Figura: Comparación entre la reflectancia medida para una muestra de dos cianobacterias y el resultado obtenido a partir de la combinación lineal.

		Combinación lineal		
		Microsystis Pseudanabaena	Pseudanabaena Dolichospermum	Microsystis Dolichospermuma
Mezcla	Microsystis Pseudanabaena	0.0066	0.014	0.0350
	Dolichospermum Pseudanabaena	0.098	0.0055	0.0261
	Dolichospermum Microsystis	0.0165	0.0185	0.0042

Tabla: NS^3 para la comparación entre mezclas y combinaciones lineales de distintas especies de cianobacterias. Se muestra en verde las que coinciden para un valor crítico de 0.0068.

Que nos queda de acá en adelante

- Hacer una comparación entre aguas medidas en laboratorio y aguas naturales.
- Realizar estos análisis para simulaciones de la respuesta espectral de diferentes sensores hiper y multiespectrales: PRISMA, OLCI, Sentinel 2 MSI, LANDSAT 8 OLI, SABIAMar, etc.
- Hacer el mismo análisis con otros índices y distancias.
- Mirar la sensibilidad a partir de simulaciones numéricas de transferencia radiativa.
- ightharpoonup Mejorar el modelo a partir de una distribución más realista para ho.
- Resolver el problema analiticamente.

MUCHAS GRACIAS

¿Preguntas?

fnemina@conae.gov.ar

- Munroe, Randall (2022). Xkcd: Change in slope. https://xkcd.com/2701.
- Nidamanuri, Rama Rao y Bernd Zbell (2010). «Normalized Spectral Similarity Score (NS^3) as an Efficient Spectral Library Searching Method for Hyperspectral Image Classification». En: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 4.1, págs. 226-240.
- Slonecker, Terrence y col. (2021). «Hyperspectral Reflectance Characteristics of Cyanobacteria». En: Advances in Remote Sensina 10.3, págs. 66-77.